

Universität Stuttgart

Evaluating monolingual term extraction from German texts

Tanja George*, Johannes Schäfer*, Ina Rösiger*, Ulrich Heid•, Michael Dorna[<] *Universität Stuttgart, •Universität Hildesheim, [<]Robert Bosch GmbH

Framework and objectives

- Experiments on high quality term extraction: Research collaboration: University ↔ BOSCH corporate research
- Domain: German do-it-yourself instructions DIY expert texts and user-generated content (UGC)

TTC: cf. Gojun et al. 2012

SDL MultiTerm 2014 Extract

- Tool evaluation:
- -Hybrid research prototype
- Alternative components: statistical and syntax-based
- Statistical tool:

 corpus
 pre pre possing
 pattern
 statistical
 term

 search
 search
 statistical
 iltering
 iterm

 steps of monolingual term candidate extraction
 statistical
 ist

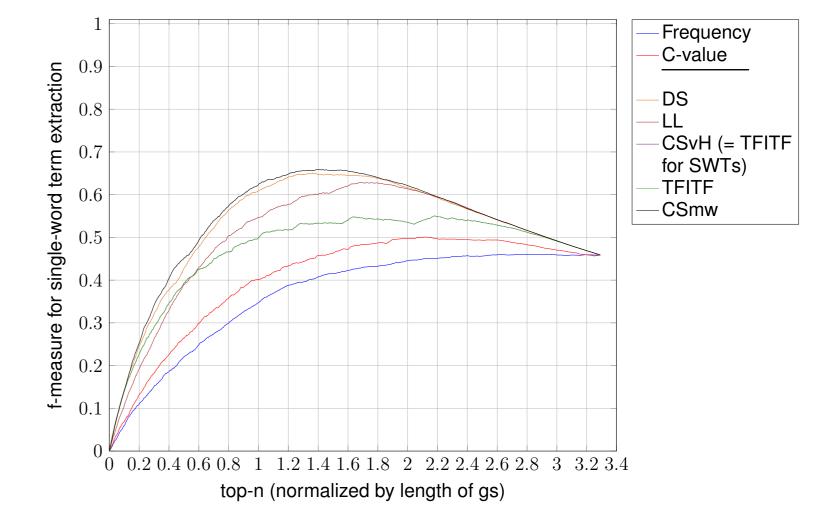
2. Alternative components

- Patterns: NPs and their boundaries, as annotated to subjects/objects by the *mate* parser: Bohnet 2010 check N+Prp+N candidates for phrase boundary compatibility
- Statistical filtering: Termhood measures
- C-value as enhanced frequency

Pazienza et al. 2005

Frantzi et al. 2000

Evaluation 2: Alternative statistical measures


• Tests

Schäfer 2015

– Precision, recall, **f-measure**

for all patterns and all termhood measures

- Experiments on combinations of measures

commercial product (SDL)

Evaluation methodology

- Use of manually designed gold standard:
- 3 independent annotators: +/- domain specific
- Patterns:

NBohrmaschine, Schraubenzieher, LochAdj+Noszillierende Säge, gebohrtes LochN+N_{Genitive}Führung der Säge, Kopf einer SchraubeN+von+NFräsen von Kanten, Schleifen von HolzN+Prp+NHandkreissäge mit Führungsschiene,
Spiralbohrer für Metall

• Strict vs. liberal gold standard:

Full agreement (3:0) vs. majority vote (2:1)

- Automatic evaluation: precision, recall, f-measure
- All results collected in a database

DIY corpus

Size and composition of the corpus:

Text type	# of tokens	authors
DIY manual	62 131	experts
DIY encyclopedia	6 868	experts
DIY practical "tricks"		experts
Marketing texts	35 302	experts
DIY project descriptions	2 160 008	UGC
FAQs (forum)	5 150	UGC
Wiki content	444 381	UCG
Total	2 728 944	

Comparison							
of domain vs. general language frequency:							
· DS: Domain Specificity	Ahmad 1999						
· LL: log-likelihood	Rayson/Garside 2000						
· CSvH: Contrastive Selection via Heads	Basili et al. 2001a						
· TFITF:	Bonin et al. 2010						
Term Frequency Inverse Term Frequency	/						
· CSmw:	Bonin et al. 2010						
Contrastive Selection of multi-word terms	5						

- First experiments with association measures

- Purely statistical tool (SDL)
- Language-independent, commercial state-of-the-art
- -11 user-selectable quality levels with respect to noise \leftrightarrow silence relationship

Evaluation 1: Hybrid vs. statistics only

• Tests:

- Precision and recall vs. length of candidate list
- Precision and recall vs. SDL quality levels
- F-measure by SDL quality levels

• Results:

- Weirdness ratio (=DS) and CSmw performed best (max. f-measure: 65% for single-word terms, 50% for multi-word terms (MWTs))
- C-value "corrects" frequency counts due to sensitivity to term embedding, could be used instead of frequency as input for other measures
- Association measures outperform frequency baseline, but are only applicable to high frequency candidates

Evaluation 3: Parsing-based extraction

Motivation:

noise in multi-word candidate sets

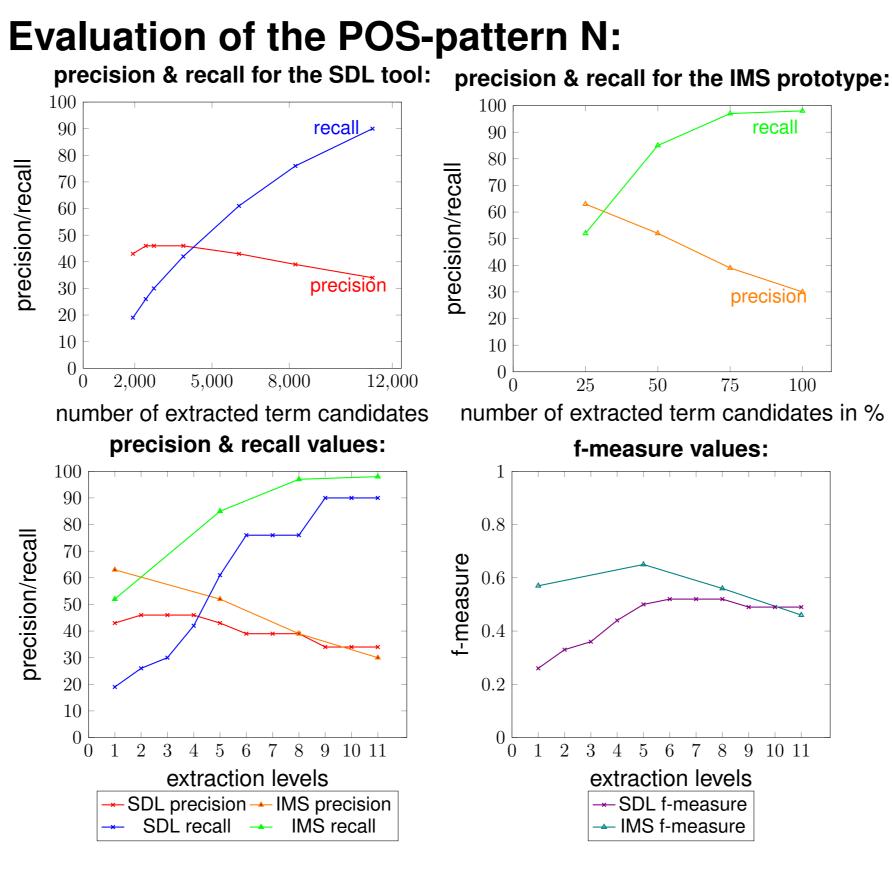
- POS patterns:
 no information about phrase boundaries
- Example: "NP₁+Prp+NP₂" should

George 2014

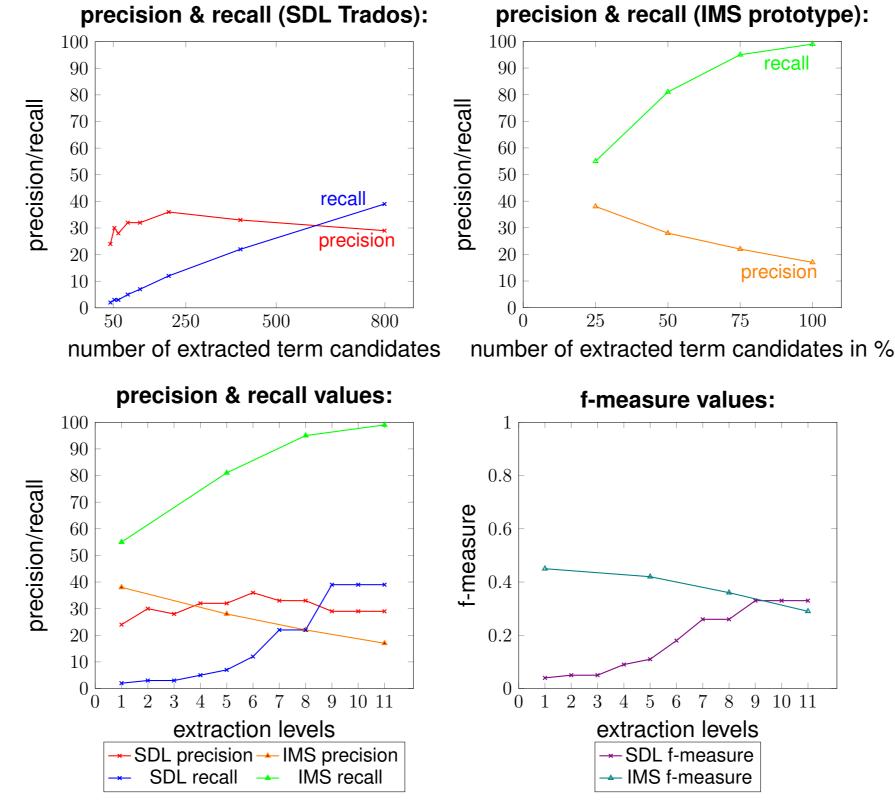
upper panels

lower left panel

lower right panel


Gold standard development

- Guidelines for cases of doubt: term vs. non-term
- In-domain vs. out-of-domain ambiguities: Engländer, Rahmen, Leitung, Ton,...
- Abbreviations: *PVC, EU*
- Measure indications: *6mm-Bohrer,* 240er Schleifpapier vs. 2. Gang, 1-2-do
- Product and company names: IXO von Bosch


• Size:

Pattern:	{3:0}	{2:1}	Total
Ν	2296	1942	4238
Adj + N	301	303	604
$N + N_{gen}$	102	46	148
N+von+N	42	14	56
N + Prp + N	36	15	51
Total:	2777	2320	5097

• Items with f>4

Evaluation of the POS-pattern ADJ+N:

only extract NPs, when NP₂ is embedded in NP₁: Man legt die Oberfräse nach Arbeitsende ab...

- Method: find start and end points of complex NPs candidates going beyond phrase boundaries are not counted as valid term candidates
- More extensive gold standard under construction
- Tests and results:
- Percentage of phrase boundary violations:
 ca. 8% of token instances of all candidates
- Manual plausibility check:
 83% of top-100 non-term candidates are correctly spotted and removed from result: *Vorlage mit Sprühkleber, Schraube zum Einsatz*

Conclusions and future work

• So far:

- Gold-standard-based evaluation: method and database infrastructure

George 2014

- First results:
- Hybrid tool

outperforms merely statistical one on DE data - MWT noise (f<0.5) can be reduced

Inter-annotator-agreement

Annotators:	κ of N+ <i>von</i> +N:	κ of N+N _{gen} :	κ of N:	κ of ADJ+N:	κ of N+Prp+N:
A1&A2	0.69	0.47	0.50	0.55	0.63
A2&A3	0.65	0.60	0.54	0.54	0.65
A3&A1	0.71	0.48	0.48	0.52	0.60
A1, A2&A3	0.68	0.52	0.51	0.54	0.63
					1

Interpretation of the kappa-values: 0.41 - 0.60 Moderate agreement 0.61 - 0.80 Substantial agreement

Tools and components evaluated

1. Hybrid research prototype

- Text pre-processing: tokenizing, POS-tagging, lemmatization
- Candidate extraction via POS-patterns
- Filtering Ahmad et al. 1992 with "weirdness ratio" threshold
- Results:

Landis et al. 1977

- Hybrid tool
 - outperforms statistical tool for all patterns
- Several SDL quality levels provide identical results
- -Maximum f-measure: ca. 0.6 for nouns, 0.4 for Adj+N: \Rightarrow room for improvement

- by use of C-value to "correct" frequency counts
- Qualitative results suggest usefulness
 of phrase boundary filter for MWT extraction

• Future work:

-More detailed analysis of measure combinations to reduce MWT noise,

e.g. termhood plus association measures

- Use of parsing-based extraction:
 - Detailed evaluation of phrase-boundary filter
 - Problem:

mate not optimized for phrase boundaries: Experiments also with other parsers

- ⇒ Extraction of noun+verb data to find evidence for relational knowledge,
 e.g. "X causes Y", "X uses Y for Z"...
- Gold standard data in preparation