Comparative Survey of German Hate Speech Datasets: Background, Characteristics and Biases

Markus Bertram, Johannes Schäfer¹, Thomas Mandl¹

University of Hildesheim ¹Institute for Information Science and Natural Language Processing (IwiSt)

 ${\tt johannes.schaefer,mandl} \\ \verb"Quni-hildesheim.de"$

October 11, 2023

Hate Speech Datasets

Empirical research on hate speech

- Different data sources (social media platforms)
- Different filtering techniques (rare phenomena)
- Different concepts/definitions

(toxicity, abusive/offensive language, profanity, (illegal) hate speech)

 \Rightarrow Characteristics of datasets and biases?

Basis: Bias and comparison framework for English abusive language datasets (Wich et al., 2022) \rightarrow Our work: Survey of **German** datasets

Agenda

4

5

7

Framework Analyses

13

Bias and comparison framework for abusive language datasets Wich et al. (2022)

Goal: Identify characteristics and biases of datasets

- **1** Latent Semantic Indexing (LSI) to measure the intra-dataset similarity between classes
- Embedding-based similarity:
 Inter-dataset similarity and intra-dataset similarity between classes
- III-based word rankings: Most prominent words for the hate speech (HS) class in each dataset, inter-dataset comparison
- Scross-dataset topic model: Clear HS topic(s) or different topics more prominent?
- Shapley values: Identify important features for HS classifiers

Overview of German hate speech datasets

Dataset name	Source	# of labeled samples	# of unlabeled samples	% abusive of labeled data	Inter-rater agreement
Covid2021	Twitter	4,960	0	22%	$\alpha = .92$
De-reddit-corpus	Reddit	0	2,992,835	-	-
Germeval2018	Twitter	8,541	0	34%	$\alpha = .78$
Germeval2019	Twitter	9,862	0	52%	$\kappa = .59$
Hasoc2019	Facebook, Twitter	4,669	0	12%	$\kappa = .88$
Hasoc2020	Twitter	3,400	0	29%	$\kappa = .83$
iHS	Twitter	1,249	275,022	40%	$\kappa = .4455$
IWG Hate. pub.	Twitter	469	0	23%	$\alpha = .38$
Telegram	Telegram	1,149	5,421,845	16%	$\alpha = .74$

Bertram, Schäfer, Mandl (Uni Hildesheim)

German Hate Speech Datasets

Challenges in preparing these datasets

German hate speech datasets

- Different concepts annotated: Binary vs. fine-grained classes or sub-classes; automatic annotation in De-reddit-corpus → are datasets even comparable?
- Including different sources: Most available datasets contain only Twitter data
- Partial overlap: Dataset iHS includes some Germeval data
- Different dataset sizes: Downsampling of larger datasets?

Latent Semantic Indexing (LSI) to measure the intra-dataset similarity between classes

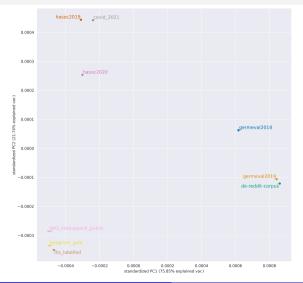
(,		
Dataset	$A\toA$	A o N,	$N \to N$
		$N\toA$	
Covid2021	.70	.71	.72
De-reddit-corpus	.29	.26	.24
Germeval2018	.39	.41	.44
Germeval2019	.41	.40	.36
Hasoc2019	.53	.57	.61
Hasoc2020	.48	.50	.56
iHS	.47	.49	.51
IWG Hatespeech public	.28	.17	.21
Telegram	.34	.37	.44

Key results

- Differences between classes in each dataset rather small
- $\rightarrow\,$ High intra-dataset similarity
- \Rightarrow Hate speech detection task is difficult in each dataset

Bertram, Schäfer, Mandl (Uni Hildesheim)

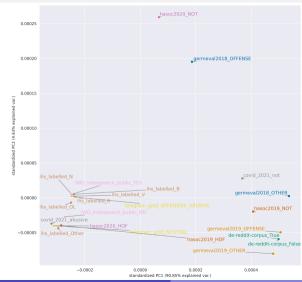
Embedding-based inter-dataset similarities



Key results

- 2D PCA projection (limited informative value)
- HASOC19/20 and Germeval18/19 each close together
- Germeval2019 closer to De-reddit-corpus than to Germeval2018
- No Twitter vs. Telegram/reddit separation
- Covid data close to pre-Covid data

Embedding-based similarity: separated classes

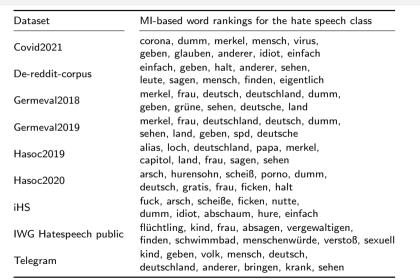


Key results

- Embedding centroids for individual classes in each dataset
- No clear clusters for abusive vs. neutral (only possibly for
 - HASOC19/20 and Covid data)

9/14

MI-based word rankings



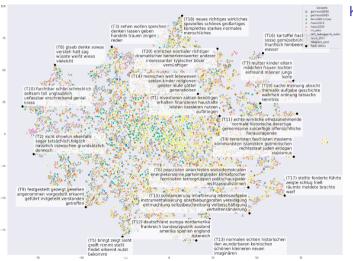
Bertram, Schäfer, Mandl (Uni Hildesheim)

Key results

 Most terms indicating insult/profanity

 Identity terms (bias!)

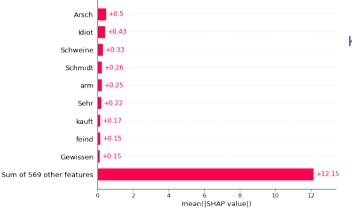
Cross-dataset topic model



Key results

- Most topics not relevant to HS; possible exceptions:
 - T4 (*terroristen*, *faschisten*, *moslems*, etc.)
 - T6 (feministen, terrorgruppen)
 - T15 (inhaftierung, abschieberaten, etc.)
- Some topics include identity terms (often targets of HS)
- No clear clustering of datasets to specific topics (e.g. no COVID-19 topic)

Feature importance using Shapley values



Key results

- Most important tokens to detect HS class
- Here displayed for dataset iHS
- Inter-dataset comparison: Vast majority of features are different

Julivers/

Comparative Survey of German Hate Speech Datasets

Conclusion

- Distinction of abusive vs. neutral class is difficult in these datasets
- Combination of (rather small) datasets seems to be important to cover wider range of hate speech phenomena
- Datasets cover many topics
- Biases to certain identity terms

Related publications

- Bias Mitigation for Capturing Potentially Illegal Hate Speech (dataset iHS) Schäfer (2023)
- HS-EMO: Analyzing Emotions in Hate Speech

Schäfer and Kistner (2023)

- M. Wich, T. Eder, H. Kuwatly and G. Groh. (2022). Bias and comparison framework for abusive language datasets, AI and Ethics 2 1–23. http://dx.doi.org/1.1007/s43681-021-00081-0.
- Johannes Schäfer. (2023). Bias Mitigation for Capturing Potentially Illegal Hate Speech. In: Datenbank-Spektrum. https://doi.org/10.1007/s13222-023-00439-0.
- J. Schäfer and E. Kistner. (2023). HS-EMO: Analyzing Emotions in Hate Speech. In: Proceedings of KONVENS 2023.

Data/Code: https://github.com/Johannes-Schaefer/HS-EMO.