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Hate Speech (HS) and
Offensive Language (OL) Detection

Need for automatic detection in social media posts

What is offensive - and to whom?

How is OL/HS defined?
→ Not clear (even to humans), complex problem

Empirical approach:

gather (multiple) human assessments of actual data
learn model on this data using machine learning
automatically find patterns of HS/OL
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Why Neural Networks (NNs)?

x ŷ

NNs learn highly complex function f: f (x) = ŷ

Based on raw input, no predetermined features
→ can learn variety of features/combinations themselves

Identify helpful input features for the classification task

Complex combinations of features
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Linguistic Features in Neural Networks

Motivation

NN approaches: purely statistical, processing of signal data

Linguistic utterances → contain structure

Support the NN
(careful: not predetermined features! only as additional input)

Basic principle of CL:
statistical processing with the inclusion of linguistic knowledge!
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Methods: Neural Network Systems

Offensive Language Detection Task
Encoding the Input Sequences (Text)

xi :

@OnlineMagazin
wir
haben
Schwachmaten
und
Dumpfbacken
als
Politiker

:-)

OL ŷi :

yes/no

Input x ŷ

?
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Methods: Neural Network Systems

Semantic Representation of Words
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Methods: Neural Network Systems

Encoding the Semantic Representations

xi :

@OnlineMagazin
wir
haben
Schwachmaten
und
Dumpfbacken
als
Politiker

:-)

1 ...
...

4 ...

7 4 ...
...

5 9 ...
...
...

-3 ...

Input Word Embeddings

OL ŷi :

yes/no?

ŷ

Johannes Schäfer (IwiSt-CL, Uni HI) Linguistic Features in Neural Networks February 27th, 2019 8 / 15



Methods: Neural Network Systems

Learning Sequences
Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) cells

xi :

@OnlineMagazin
wir
haben
Schwachmaten
und
Dumpfbacken
als
Politiker

:-)

1 ...
...

4 ...

7 4 ...
...

5 9 ...
...
...

-3 ...

Input Word Embeddings

OL ŷi :

yes/no
RNNx ti

RNN

Encoder ŷ
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Methods: Neural Network Systems

Learning on N-Grams
Convolutional Neural Network (CNN)

xi :

@OnlineMagazin
wir
haben
Schwachmaten
und
Dumpfbacken
als
Politiker

:-)

1 ...
...

4 ...

7 4 ...
...

5 9 ...
...
...

-3 ...

Input Word Embeddings

OL ŷi :

yes/no

CNN

}}}}
...

}}
...

Encoder ŷ
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Methods: Neural Network Systems

Performance of the Architectures

Results on the GermEval-20181 test dataset

Recurrent NN (RNN) using Long short-term memory (LSTM) units:
Learning representations on sequences F1,macro-avg = 70.66 %

Convolutional Neural Network: Learning representations
as combination of n-grams F1,macro-avg = 71.14 %

⇒ Usually only part of message offensive → trigger

1https://projects.fzai.h-da.de/iggsa/
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Extensions using Linguistic Features

Additional sub-networks
Overall NN architecture extended from Founta et al. 2018

Text Input (Tweet)

Text Encoder
(RNN or CNN)

Metadata

Meta Encoder
(Densely-connected NN)

Part-of-Speech tags

Encoder
(RNN/Dense)

concatenate

ŷ

Results:
Metadata sub-network - improvements; minimal with POS tags
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Extensions using Linguistic Features

Considering Word Components

Motivation

Pre-trained word embeddings (initial weights)

OOV words
(Politidioten, Oberdummzicke, Sozialschmarotzer, Migrantenpack)

First implementation:
Handle compounds as seperate words assuming compositionality

Performance using compound splitting

CNN on word component embeddings: F1,macro-avg = 73.42 %
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Future Work: Further Features to detect HS/OL

Where to integrate linguistic features?

Text Input (Tweet)

Text Encoder
(RNN or CNN)

Metadata

Meta Encoder
(Densely-connected NN)

Part-of-Speech tags

Encoder
(RNN/Dense)

concatenate

ŷ

Effect of additional features in parallel sub-networks is low

→ Linguistic features directly in the text encoding!
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Future Work: Further Features to detect HS/OL

Conclusion: “Digital Methods in Political Science”

Sophisticated analysis necessary
for automatic offensive language and hate speech detection

Offensive language hidden in words or multi-word constructions

What NN approaches and linguistic features can be discussed to
analyze political discussions in particular?

Possibilities to include the target/victims (detection of typical groups)
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