Neural networks at hate speech and offensive language detection with a focus on linguistic features

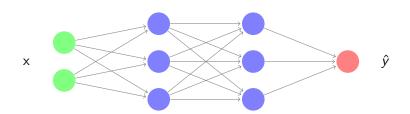
Johannes Schäfer johannes.schaefer@uni-hildesheim.de

Supervisor: Professor Dr. Ulrich Heid

University of Hildesheim Institute for Information Science and Natural Language Processing

February 27th, 2019

Hate Speech (HS) and Offensive Language (OL) Detection



Need for automatic detection in social media posts

- What is offensive and to whom?
- How is OL/HS defined?
 - \rightarrow Not clear (even to humans), complex problem
- Empirical approach:
 - gather (multiple) human assessments of actual data
 - learn model on this data using machine learning
 - automatically find patterns of HS/OL

Why Neural Networks (NNs)?

NNs learn highly **complex** function f: $f(x) = \hat{y}$

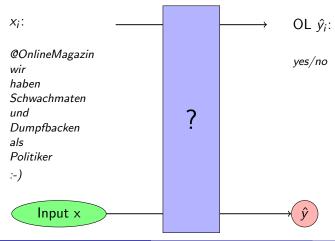
- Based on raw input, no predetermined features
 → can learn variety of features/combinations themselves
- Identify helpful input features for the classification task
- Complex combinations of features

Linguistic Features in Neural Networks

Motivation

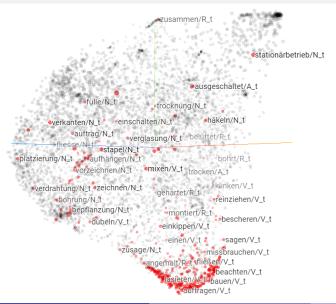
- NN approaches: purely statistical, processing of signal data
- Linguistic utterances → contain structure
- Support the NN (careful: not predetermined features! only as additional input)
- Basic principle of CL: statistical processing with the inclusion of linguistic knowledge!

Overview

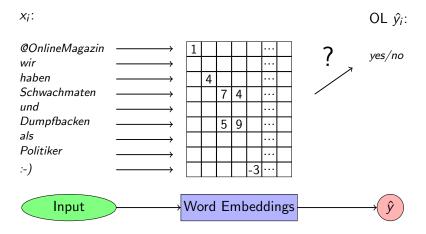


 Methods: Neural Network Systems Extensions using Linguistic Features Future Work: Further Features to detect HS/OL 	6
	12
	14

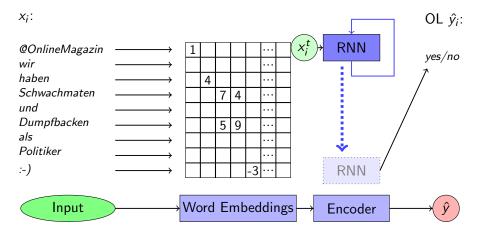
Offensive Language Detection Task

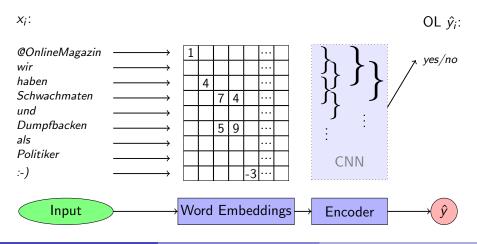

Stillers II

Encoding the Input Sequences (Text)


Semantic Representation of Words

Encoding the Semantic Representations




Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) cells

Learning on N-Grams

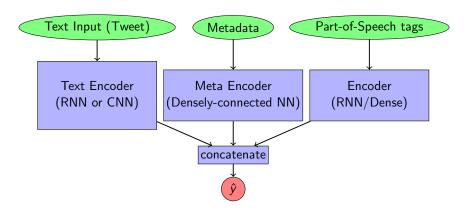
Siversitation of the state of t

Convolutional Neural Network (CNN)

Performance of the Architectures

Results on the GermEval-2018¹ test dataset

- Recurrent NN (RNN) using Long short-term memory (LSTM) units: Learning representations on sequences $F_{1,\text{macro-avg}} = 70.66 \%$
- Convolutional Neural Network: Learning representations as combination of n-grams $F_{1,
 m macro-avg} = 71.14~\%$
- \Rightarrow Usually only part of message offensive \rightarrow trigger


¹https://projects.fzai.h-da.de/iggsa/

Additional sub-networks

Overall NN architecture

extended from Founta et al. 2018

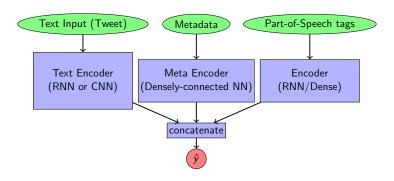
Results:

Metadata sub-network - improvements; minimal with POS tags

Considering Word Components

Motivation

- Pre-trained word embeddings (initial weights)
- OOV words
 (Politidioten, Oberdummzicke, Sozialschmarotzer, Migrantenpack)
- First implementation:
 Handle compounds as seperate words assuming compositionality


Performance using compound splitting

CNN on word component embeddings:

 $F_{1,\text{macro-avg}} = 73.42 \%$

Where to integrate linguistic features?

Effect of additional features in parallel sub-networks is low

ightarrow Linguistic features directly in the text encoding!

Sophisticated analysis necessary for automatic offensive language and hate speech detection

- Offensive language hidden in words or multi-word constructions
- What NN approaches and linguistic features can be discussed to analyze political discussions in particular?
- Possibilities to include the target/victims (detection of typical groups)

References

- Johannes Schäfer. HIIwiStJS at GermEval-2018: Integrating Linguistic Features in a Neural Network for the Identification of Offensive Language in Micropost, In Proceedings of the Workshop Germeval 2018 – Shared Task on the Identification of Offensive Language. Vienna, Austria. September 21, 2018.
- Michael Wiegand, Melanie Siegel, and Josef Ruppenhofer. Overview of the GermEval 2018 Shared Task on the Identification of Offensive Language. 14th Conference on Natural Language Processing KONVENS 2018. 2018.
 - https://projects.fzai.h-da.de/iggsa/, Results: https://github.com/uds-lsv/GermEval-2018-Data.
- Antigoni-Maria Founta, Despoina Chatzakou, Nicolas Kourtellis, Jeremy Blackburn, Athena Vakali, and Ilias Leontiadis. A unified deep learning architecture for abuse detection. CoRR, abs/1802.00385. 2018.